Subgroups of $p$-divisible groups and centralizers in symmetric groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

finite $p$-groups and centralizers of non-cyclic abelian subgroups

a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is ‎cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq‎ ‎z(g)$‎. ‎in this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{cac}$-$p$-groups‎.

متن کامل

HIGHER-LEVEL CANONICAL SUBGROUPS FOR p-DIVISIBLE GROUPS

Let R be a complete rank-1 valuation ring of mixed characteristic (0, p), and let K be its field of fractions. A g-dimensional truncated Barsotti-Tate group G of level n over R is said to have a level-n canonical subgroup if there is a K-subgroup of G ⊗R K with geometric structure (Z/pZ) consisting of points “closest to zero”. We give a nontrivial condition on the Hasse invariant of G that guar...

متن کامل

Minimal p-divisible groups

Introduction. A p-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic then X1[p] ∼= X2[p]; however, conversely X1[p] ∼= X2[p] does in general not imply that X1 and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the p-kernels whic...

متن کامل

On centralizers of parabolic subgroups in Coxeter groups

Let W be an arbitrary Coxeter group, possibly of infinite rank. We describe a decomposition of the centralizer ZW (WI) of an arbitrary parabolic subgroup WI into the center of WI , a Coxeter group and a subgroup defined by a 2-cell complex. Only information about finite parabolic subgroups is required in an explicit computation. Moreover, by using our description of ZW (WI), we reveal a further...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2014

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2014-06344-7